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Abstract 

In this paper we show that the Euler number of the compactified Jaco

bian Je of a rational curve C with locally planar singularities is equal to 

the multiplicity of the 8-constant stratum in the base of a semi-universal 

deformation of C. The number e(JC) is the multiplicity assigned by 

Beauville to C in his proof of the formula, proposed by Yau and Zaslow, 

for the number of rational curves on a K3 surface X. We prove that 

e(JC) also coincides with the multiplicity of the normalisation map of 
C in the moduli space of stable maps to X. 

1. Introduction 

Let G be a reduced and irreducible projective curve with singular set I; C G 

and let n: C---+ G be its normalisation. The generalised Jacobian JG of G 

is an extension of JG by an affine commutative group of dimension 

fj := dimH0 (n*(00 )/0c) = L 8(G,p) 
pEE 

so that dim JG= dim JC:+8 = g(C:)+8 is equal to the arithmetic genus ga(G) 

of G. The non-compact space JG is naturally an open subset of the compact

ified Jacobian JG of G, whose points correspond to isomorphism classes of 

rank-one torsion-free sheaves :F of degree zero (i.e., x(:F) = 1- ga(G)) on G. 

The space JG is irreducible if and only if G has planar singularities; then JG 

is in fact a compactification of JG, i.e., JG is dense in JG (see [AIK], [R] and 
[K-K]). If moreover Gis rational and unibranch, then JG is topologically the 

product of compact spaces M(G,p) for every p EI;_ The space M(G,p) only 
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depends on the analytic singularity (C,p); it can be defined as ]D for any 

rational curve D having ( C, p) as unique singularity. 

Let B = B(C,p) be the base of a semi-universal deformation of the singu

larity (C,p). Inside B let Bö = Bö(C,p) be the locus of points for which 8 

remains constant. This means that 

t E Bö# L 8(Ct,P) = 8(C). 
pEC, 

The codimension of Bö is 8(C,p); its multiplicity m(C,p) at [(C,p)] is by defi

nition equal to the number of intersection points with a generic 8-dimensional 

smooth subspace of B. The 8-constant stratum can be defined in a similar 

way for a semi-universal deformation of a projective curve with only planar 

singularities. In this paper we show the following theorem. 

Theorem 1. Let ( C, p) be a reduced plane curve singularity. Then the 

Euler number of M(C,p) is equal to the multiplicity of the 8-constant stratum: 

e(M(C,p)) = m(C,p). 

Let C be a projective, reduced rational curve with only planar singularities. 

Then e(]C) = m(C), the multiplicity of the 8-constant stratum Bö at 0. 

Note that this gives an independent proof of the following result of Beau

ville: Let C be an irreducible and reduced rational curve with planar singu
larities. Then e(]C) can be written as a product over the singularities of C 

of a number only depending on the type of the singularity, and it is the same 
for C and its minimal unibranch partial normalisation. 

Theorem 1 has an application in the following situation. Let X be a 

(smooth) K3 surface with a complete (hence g-dimensional) linear system 

of curves of genus g. Under the assumption that all curves in the system 

are irreducible and reduced, it was shown in [B], following an argument of 

[Y-Z], that the number n(g) of rational curves occurring in the linear system, 
is equal to the lh coefficient of the 24th power of the partition function, i.e: 

I: n(g)q9 = il q( ) 
g:::-:o q 

where il(q) = qlln;::: 1(1- qn)24 . In this counting, a rational curve C in the 
linear system contributes e(JC) to n(g): 

n(g) = L e(JC). 
C 
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If C is a rational curve with only nodes as singularities, then e(JC) ~ 1, so 

that e(JC) seems tobe a reasonable notion of multiplicity. Theorem 1 implies 

that e(JC) is always positive, andin principle allows an explicit computation 

of it (see section G). 

In fact, we prove a more precise statement. For any projective scheme 

Y and d E H2(Y, Z) let Mo,o(Y, d) be the moduli space of genus zero stable 

maps f : P1 ---t Y with f*([P1]) = d. Under the above assumptions on the 

K3 surface X and the linear system corresponding to d, the space Mo,o(X, d) 

is a zero-dimensional scheme. If C ~ X is a rational curve in X ( always 

assumed tobe irreducible and reduced), n: P 1 ---t C its normalisation, then 

f = i o n: P 1 ---t Xis a point of M 0 ,0 (X,d). The moduli space M 0 ,0 (X,d) 

contains naturally as a closed subscheme Mo,o(C, [Cl), the submoduli space 

of maps whose scheme-theoretic image is C; the latter scheme is of course 

defined for any projective reduced curve C, and it is zero-dimensional if the 

curve is rational. More generally, M 9 ,0 (C, [Cl) is zero-dimensional, where 

g denotes the genus of the normalisation of C. The following theorem gives 
another interpretation of e (J C) in terms of the length of such zero-dimensional 

schemes. 

Theorem 2. Let C be a reduced, irreducible projective curve with only pla

nar singularities, and let g be the genus of its normalisation. Then m( C) = 
l(M9 ,0 (C, [Cl)). ff moreover C is rational and contained in a smooth K3 sur

face X, then e(JC) = l(Mo,o(X, d), f) (length of the zero-dimensional com

ponent supported at f). 

We now sketch briefly the idea of the proof of Theorem 1. 

Let e --+ B be a semi-universal family of deformations of a curve C with 

planar singularities. We prove that the relative compactified Jacobian Je 
is smooth; moreover, given any deformation e' --+ S of C with a smooth 

base, Je' is smooth if and only if the image of TS is transversal in TB to 

the 8-codimensional vector space V, the support of the tangent cone to the 

8-constant stratum B 15 • 

Assume now that C is rational and has p as unique singularity. We have to 
show that e(JC) = m(C,p). Choose a one-parameter family Wt of smooth 8-

dimensional subspaces of Bsuch that OE Wo, Tw0 ,onV = {O}, and for general 
t the intersection Wt n B 15 is a set of m(C,p) distinct points corresponding to 

nodal curves. 
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Let Ct __, Wt be the induced families. Then ]Ct is a family of smooth 

cornpact varieties; hence e(JCt) does not depend on t. Arguing as in [Y-Z] 
and [B], we prove that e(JC0 ) = e(JC), while e(JCt) = m(C,p) fort general. 

Conventions 

In this paper we will always work over the complex numbers, and open 

will mean open in the strong (euclidean) topology (unless of course we specify 

Zariski open). 

Preliminaries 

We will use the language of deformation functors; we recall a few facts 

about them for the reader's convenience. 
A deformation functor D will always be a covariant functor from local 

Artinian C-algebras to sets, satisfying Schlessinger's conditions (Hl), (H2), 

(H3), hence admitting a hull (see [Sch]). In particular, D admits a finite

dimensional tangent space, which we denote by T D, functorial in D. A functor 

is smooth if its hull is. The dimension of the functor will be equal to the 

dimension of the hull. We will need the following elementary result. 

Lemma. Let X __, Y and Z --, Y be morphisms of smooth deformation 

functors. Then X x y Z is smooth of dimension dim X + dim Z - dim Y if 

and only if the images of T X and TZ span TY. 

Proof. Base change considerations reduce the problem to the case of prorep-

resentable functors, where it is obvious. ◊ 

lt would be possible to replace deformation functors with contravariant 

functors on the category of germs of complex spaces, and the hull with the base 

of a semi-universal family of deformations. The two viewpoints correspond to 

working with formal versus convergent power series. 
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A. Deformations of curves and sheaves 

Let C be a reduced projective curve, with singular set ~- Any deforma

tion C ---+ S of C over a base S induces a deformation of its singularities. 

More precisely, one can introduce the functor of local deformations by let

ting D10c(C)(T) be the set of isomorphism classes of data (Ui, UT)iEI, where 

(Ui)iEI is an affine open cover of C and, for each i, UT is a deformation of 

Ui over T; we require that the induced deformations of Uij := Ui n Uj be the 

same. There is a natural transformation of functors loc: D(C) ---. D10c(C); 
the induced map of tangent spaces can be identified with the edge homomor

phism 

of the local-to-global spectral sequence for the Ti. The kernel of this map is 

H 1 ( 8c), the cokernel injects in H 2 ( 8 0 ) which is zero. The obstruction space 

Tb sits in an exact sequence 

Since Cis reduced, TJ is supported on a finite set of points, hence H 1 (TJ) = 0. 

If C has locally complete intersection singularities, then also TJ = 0, so that 

in that case Tb = 0. Hence in such a situation, and in particular when C is a 

reduced curve with only planar singularities, the functors D( C) and D 10c( C) 

are smooth and loc is a smooth map. 

Let F be a torsion-free coherent sheaf on C. Analogously, we denote by 

D ( C, F) the functor of deformations of the pair, and define the functor of local 
deformations by letting D10c(C,F)(T) be the set of isomorphism classes of 

data (Ui, UT, FT)iEI where (Ui)iEI is an affine open cover of C, and for each i, 
(U'f, F'f) is a T-deformation of (Ui, FluJ such that the induced deformations 

on Uij are the same. 
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Again we have a localisation map D( C, F) ---+ D10c ( C, F). The four functors 

introduced sit in a natural commutative diagram 

D(C,F) 

l 
D(C) 

--+ Dloc(C,F) 

l 
--+ Dloc(C) 

with horizontally localisation maps and vertically forget maps. Note that this 

diagram in general is not cartesian. 

Proposition A.1. The canonical map 

is smooth. 

Proof. We have to show the following: Let Fr, Cr be flat deformations 

of C and F over T, fr E D10c(C,F)(T) the induced local deformation. If 
we are given lifts Cr, and f;.r, over a small extension T' of T, then we can 

lift Fr to a deformation Fr, of F over Cr, inducing f;.r,. This can be clone 

as follows: choose an affine open cover Ui of C such that fr, is defined by 

coherent sheaves F[ on the induced cover Ui,r' of Cr,. Assume also that 

Uij := Ui n Uj is smooth for every i i= j. 
Let Fi be the restriction of F[ to Ui,r• The fact that F induces fr means 

that we can find isomorphisms c/Ji : Frlu,,T ---+ Fi. The c/Ji induce isomorphisms 

c/Jij : Fi ---+ Fj over Uij,r, satisfying the cocycle condition. What we need to 

prove is that the c/Jij can be lifted to cp~j : Ff ---+ FJ, again satisfying the cocycle 

condition; then the cp~j can be used to glue together the F['s to a coherent 

sheaf Fr, as required. But on Uij all the sheaves under consideration are line 

bundles; hence the obstruction to the existence of such a lifting is an element 

in H 2 (C,Oc), which is zero since C has dimension 1. ◊ 

If R is a ring and M is an R-module, we denote by D(R), respectively 

D(R, M), the corresponding deformation functors. 

Lemma A.2. Let C be a reduced projective curve, F a torsion-free mod

ule on C. Let I; denote the singular locus. Then the natural morphisms of 

functors 

Dloc(C)---+ II D(Oc,p) and D10c(C,F)---+ II D(Oc,p,Fp) 
pEI; pEI; 

are isomorphisms. 
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Proof. Both morphisms are clearly injective. On the other hand, surjectiv

ity is obvious since on the smooth open locus, every infinitesimal deformation 

is locally trivial and every torsion-free sheaf is locally free. ◊ 

Proposition A.3. Let P be a regular local ring of dimension 2, f E P 

a nonzero element, and R = P / (J); assume that R is reduced. Let M be a 

finitely generated, torsion-free R-module of rank 1. Then D(R, M) is a smooth 
functor. 

Proof. Since it is torsion free, the module M has depth 1. By the Auslander

Buchsbaum theorem (see e.g. [Mal), M has a free resolution of length 1 as 

a P-module, so is represented as the cokernel of some n x n matrix A with 
entries from P: 

0 ------> pn ~ pn ------> M ------> 0. 

Since M is an R-module of rank 1, the determinant ideal (det(A)) is equal 

to (J). 

Any flat deformation Mr of M over T (as P-module) is obtained by de
forming the matrix A to a matrix Ar with entries from Pr := T @c P, so 

that Mr has a presentation 

0 -----+ Pr ~ Pr -----+ Mr -----+ 0. 

There is a unique deformation Rr of R over T such that Mr is a flat Rr

module, given by the ideal (det(Ar)). lt follows that the natural transforma

tion 

D(A) -----+ D(R, M) Ar 1--, (Pr/ det(Ar ), Coker(Ar )) 

is smooth. Since D(A), the functor of deformations of the matrix A, is clearly 

smooth, the functor D(R, M) is also smooth. ◊ 

Note that in the assumption of A.3, although both functors D(R, M) and 

D(R) are smooth, the forgetful morphism D(R, M) ----, D(R) is not smooth in 

general. 

Remark A.4. Let R be a one-dimensional local C-algebra, and let M 

be a finitely generated torsion-free R-module. Let R be the completion of 
R, and M = M ®R R. The natural rnorphisrn D(R, M) ----, D(R, M) is 

smooth and induces an isomorphism on tangent spaces, and the same is true 

for D(R) ----, D(R). In fact, it is easy to see that the induced morphisms of 

tangent and obstruction spaces are isomorphisms. 
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B. Relative compactifi.ed Jacobians 

For any flat projective family of curves e --+ S we let Je--+ S be the relative 

compactified Jacobian (see ·[A-Kl], [A-K2], [A-K3], [D]). For every closed 

point s ES the fiber over s of]e is canonically isomorphic to the compactified 

Jacobian ]Cs; in particular, its points correspond to isomorphism classes of 

torsion-free rank-1 degree-zero sheaves on Cs. 
Fixa point :FE Je over s ES, and denote again by (Je, :F) and (S, s) the 

deformation functors induced by the respective germs of complex spaces. Let 

C = Cs. Remark that if e--+ S is a semi-universal family of deformations of 

C, then we have an isomorphism of functors 

(Je,:F) ~ D(C,:F). 

For a general flat family one has a natural commutative diagram 

(Je, :F) 
l 

(S, s) 

--+ Dloc(C,:F) 

l 
--+ Dloc(C) 

and analogously to Proposition A.1 one has: 

Proposition B.1. The canonical map 

is smooth. 

We omit the proof, which is almost identical to that of Proposition A.l. 

Corollary B.2. Let C be a reduced curve with only plane curve singular

ities. If e --+ S is a versal family of deformations of C, then Je is smooth 

along JG, and ]C has local complete intersection singularities. 

Proof The family is versal if and only if the natural map S --+ D( C) is 

smooth. This in turn implies that S --+ D10c(C) is smooth, hence the first 

claim follows from Proposition B.l. On the other hand, all fibres of Je--+ S 

have the same dimension Ya(C); therefore, each of them has local complete 
intersection singularities. ◊ 

Corollary B.3. With the same assumptions as B.2, let e' --+ S' be any 

deformation of C with smooth base S'. Let :F be a torsion-free rank-1 degree

zero coherent sheaf on C. Then the relative compactified Jacobian Je' is 

smooth at [:F] if and only if the image of TS' in T D10c( C) is transversal to 

the image ofTD10c(C,:F). 
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Proof. We keep the notation of B.2. The dimension of ]C' is equal to 

dimS' + ga(C). Since ]C' is equal to the fibred product of ]C and S' over 

S, it follows that ]C' is smooth at [.r] if and only if the image of TS' in TS 

is transversal to that of T(]C,.r). Proposition B.1 implies that the image of 

T(]C,.r) is the inverse image ofthe image ofTD10c(C,.r) in TD10c(C). ◊ 

C. The canonical subspace V 

Let C be a reduced curve with only planar singularities, and let F be a 

torsion-free rank-one coherent sheaf on C. In this section we study the map 

at the level of tangent spaces. Since both functors are products corresponding 

to the singularities of C (Lemma A.2) and the tangent spaces only depend 

on the formal structure of the singularity (Remark A.4), it suffices to analyse 
what happens for 

D(R, M) - D(R) 

where P = C[[x,y]], R = P/(f), f a nonzero element of the maximal ideal 

such that R is reduced, and M a torsion-free rank-one R-module given by a 

presentation 

0 -----t pn Ä pn -----t M -----t 0. 

Proposition C.1. The image of the map TD(R, M) - TD(R) is the 

image of thefirst Fitting ideal F1(M) in the quotient ring TD(R) = P/(f, 8xf, 

8yf), 

Proof. Let Ei,j be the n x n matrix that has entry ( i, j) equal to 1 and all 

other entries equal to zero. If E2 = 0, then det(A + E.Ei,j) = det(A) + E /\n-l 

(A)i,j· Therefore, we see that by perturbing the matrix A to first order, we 

generate precisely the ideal of ( n - I) x ( n - I) minors of the matrix A as 

first-order perturbations of f. This is by definition the first Fitting ideal of 
F1(M). ◊ 

Another description of the ideal Fi(M) is the following 

Proposition C.2. Fi (M) is the set of elements r E R such that r = <p(m) 

for some m EM, <p E HomR(M, R). 
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Proof. Since M is maximal Cohen-Macaulay, a resolution of M as an R

module will be 2-periodic of the form 

B A ... -Rn-Rn-Rn-M-o 

for some n x n matrix with P-coefficients B with the property that 

AB= BA= fl 

where A, B are the induced matrices with R coefficients (see [E] or [Yo]). 

From the 2-periodicity it follows that there is an exact sequence 

A 
0 -- M -- Rn -- Rn -- M -- 0, 

where M = ker A = imB. We split this sequence into 

0 -- M -- Rn -- N -- 0, 
o-N-Rn-M--;0. 

Since N is also torsion-free and R is Gorenstein, Extk(N, R) = 0 by local 

duality. Hence we see from the fi.rst sequence that the map H omR(Rn, R) --; 

HomR(M, R) is surjective. 

From this it follows that the ideal obtained by evaluating all homomor

phisms c/J E H omR(M, R) on all elements of M is the same as the ideal 

generated by the entries of the matrix B. 

Since M has rank 1, it follows that det(A) = f, and hence the matrix Bis 
the Cramer matrix (An- 1A)tr of A. The claim follows. ◊ 

Locally, the normalisation C --; C corresponds to the inclusion of R in its 
integral closure R 

Rc......+R. 

Recall that the conductor is the ideal J = HomR(R, R). One has 

IcRcR 

and dim(R/J) = dim(R/R) = 8(C,p). 
As an important corollary of Proposition C.2 we have 
Corollary C.3. F1 (M) :::> I. 

Proof. Write R = ffiRi, with Ri a domain isomorphic to C[[t]]. Let Q(Ri) 
be the quotient field of R, and let Q(R) = ffiQ(Ri) be the total quotient 

ring of R. Since M has rank 1, M &!R Q(R) is isomorphic to Q(R); since it 
is torsion-free, the natural map M -+ M 0R Q(R) is injective. Hence up to 

isomorphism we can assume that M is a submodule of Q(R). Let m E M 

be an element of minimal valuation (it exists since M is finitely generated). 
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Then multiplication by m-1 , an isomorphism of Q(R) as an R-module, sends 
M to a submodule of R containing 1. 

So we can assume that R C M C R. Let c be any element of I. Multi

plication by c defines a homomorpism cp E HomR(M,R) with cp(l) = c (note 
that 1 ER CM). Hence 

{c/J(m) 1 m EM, cp E Hom(M,R)}::) I. 

◊ 

Remark C.4. From the above description one also sees that F 1 (R) = I. 

Hence the differential of the map D(R, M) ---+ D(R) has minimal rank for 

M=R. 

Let C be a reduced projective curve with only planar singularities, ~ its 

singular locus. For p E ~, let Vp be the subspace of codimension 15(0,p) in 

TD(C,p) generated by the conductor, and put 

Vloc = IT Vp C TD 10c(C) = II TD(C,p). 
pE~ pE~ 

Let V be the inverse image of vzoc in TD(C); note that Visa linear subspace 

of codimension 15 ( C). If B is the base space of a semi-universal family of 

deformations of C, then TB is identified with TD(C). 

Proposition C.5. Let C ---+ B be a semi-universal family of deformations 

of C. Then for any F E JG the image of the tangent map JC ---+ B at F 

contains the subspace V, and there exists at least one such F f or which the 

image is exactly V. 

Proof. The first statement follows immediately from Proposition C.1 and 

Corollary C.3, by applying Proposition B.l and Lemma A.2. The second 

statement follows in the same way from Remark C.4; e.g., we can take F = 
n*(00 ), where n: C---+ Cis the normalisation map. ◊ 

D. The ö-constant stratum 

Let C be a reduced curve with only planar singularities. We denote by 

Ban appropriate representative of the semi-universal deformation of C. The 

stratum B 8 is defined as the set of points where the geometric genus of the 
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fibres is constant. This amounts to saying that 

is constant for t E B 6 and equal to ga ( C) - g( C), hence the name. 

The analytic set B 6 (we give it the reduced induced structure) is very 

singular in general, but its properties can be related directly to the local 

8-constant strata 

Tobe more precise, B 6 is the pull-back of ß 6,10c = I]B6 (C,p) under the 

smooth map B----+ B 10c. So let (C,p) c (C2 ,0) be a reduced plane curve 

singularity, with normalisation 

(C, q) ~ (C,p), 

Note that in general q will be a finite set of distinct points, one for each 

branch of C at p. We denote for brevity by D(n) the functor of deformations 

of n: (C,q)-----+ (C,p) (that is, we are allowed to deform C and Ö as well as 

the map). 

Lemma D.1. D(n) is smooth. 

Proof. The morphism D((C,p)-----+ (C2 , 0))----+ D(n) (given by taking the 

image of the deformation of the map) is smooth. Hence it is enough to verify 

that D( ( C, p) -----+ ( C2 , 0)) is smooth, and this is obvious. ◊ 

Theorem D.2 ([T], [D-H]). Let (C,p) C (C2 ,0) be a reduced plane curve 
singularity, n: (C,q) ----+ (C,p) its normalisation. Let B(C,p) be a semi
universal family for D( C, p) and 

the 8-constant stratum. Then one has: 

(1) The normalisation B6 (C,p) of B 6 (C,p) is a smooth space. 

(2) The pull-back of the semi-universal family to B6 admits a simultaneous 

resolution of singularities. This makes B6 ( C, p) into a semi-universal family 
for D(n). 

(3) The codimension of B 8 C B is 8( C, p). Over the generic point p E B 8 , 

the curve Cp has precisely 8( C, p) double points as its only singularities. 

(4) The tangent cone to the 8-constant stratum is supported on Vp, the 
vector subspace generated by the conductor ideal. ◊ 
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The second half of (2) is in fact not explicitly stated in either of [T], [D-H]; 

however, it follows easily from Lemma D .1. A similar argument is presented 

in the proof of Proposition F.2, and so we do not repeat it here. 

E. Proof of Theorem 1 

Let C be a reduced projective rational curve with only planar singularities. 

We want to show that e(JC) = m(C). In particular, let (C,p) be a reduced 

plane curve singularity. Let C be a projective rational curve that has (C,p) 

as its only singular point. Then it follows that e(JC) = m(C,p). 

Let <l>: C--+ B be a semi-universal family of deformations of C; we denote 

its fibres by Cs = <l>-1 (s), C0 = C. Let 1r : Je --+ B be the corresponding 

family of compactified Jacobians. We always assume that we have chosen 

discs as representatives for the corresponding germs. We may also assume 

that the induced morphism j : B --+ B 10c is smooth and has contractible 
fibres. We choose a section a: ßloc--+ B of j with a(0) = 0. We will denote 

B := a(B10c), If := a(B8 ) and V:= a(V). 
Let (W, 0) C (B, 0) be a smooth subspace of dimension 8 + l containing 

the point (0, 0) together with a smooth map ,\ : (W, 0) --+ (T, 0) to a disc 

(T, 0) c (C, 0). W is a one-parameter family of 8-dimensional subspaces 

Wt = .x-1 (t) c B. We require in addition that W 0 is transverse to V. See 

Figure 1. 

By Theorem D.2 we can choose W in such a way that fort=/- 0 the fibre 

Wt intersects B 8 in mult(B8 ) points, and for s E Wt n If the corresponding 

jjö 

V 

B 

FIGURE 1 
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-8 
curve Cs has precisely 8 nodes as singularities. For s E Wt \ B the curve Cs 

will have positive genus. Let .6. C B be a closed disc, and let Z = W n .6.. We 

define the family p: ]Cz ---; T by the pull-back: 

JCz - JC 

; 17r 17r 
T ~ Z ---; B 

Since we have chosen Wo tobe transversal to V, Proposition C.5 implies that 

p is smooth along 1r-1 (0); by making .6. and T smaller we can assume that p 

is smooth. Since p is also proper, all the fibres p- 1 (t) are diffeomorphic, in 

particular they all have the same Euler number. 

The space p- 1 (t) is the union, for s E Wt, of]Cs. We know that if Cs has 

positive geometric genus, then e(JCs) is zero; arguing as in [B], we obtain 

that 
e(p-1 (t)) = L e(]Cs) 

sEW,nB6 

(note that if s E Wt, then Cs is rational if and only if s E B 8). 

The intersection of W0 C B with B 8 consists only of the point O corre

sponding to the curve C. Therefore e(p- 1 (0)) = e(JC). 

On the other hand, fort-/= 0, Wt intersects B 8 in mult(B8) points and for 
-8 s E B n Wt the curve Cs has precisely 8 nodes as singularities. Since for a 

nodal rational curve Cs, the Euler number e(]Cs) is equal to 1, we obtain 

e(p-1 (t)) = L e(]Cs) = L 1 = mult(B8). 

sEW, 

So we get 

◊ 

F. The invariant as length of moduli of stable maps 

Let C be a reduced projective curve with only plane curve singularities; let 

n: C--+ C be its normalisation, and g the genus of C. Let m(C) = I1 m(C,p). 

The scheme M 9 ,o(C, [Cl) parametrizing stable birational maps from a genus 

g curve to C contains only one point, namely the normalisation of C. The 

aim of this section is to prove that its length is equal to m( C). Note that if 
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Cis an isolated rational curve inside a smooth manifold Y, M 9 ,0 (C, [Cl) is 

naturally a closed subscheme of M 9 ,0 (Y, [Cl); in particular, m(C) is a lower 

bound for the length of the corresponding component of M 9 ,0 (Y, [Cl) (in case 
this scheme also has dimension zero). 

Denote by D(n) the deformation functor of the triple (n : C --; C), and 

by D 10c(n) the corresponding local deformation functor. As before, D 10c(n) 
is the product over the singular points p of C of D( n, p), the deformation 

functor of the triple n: (C, n-1 (p)) --t (C,p). 

If ( C, p) is the germ of a planar reduced curve singularity, then D( n, p) is 
a smooth functor ( see section D). 

Lemma F.1. The natural morphism of functors D(n)--; D10c(n) XD1ac(C) 

D( C) is an isomorphism. 

Proof. Let Cr be an infinitesimal deformation of C, and let Ui be an open 

cover of C such that UiJ is smooth for each i -/=- j. Let ¼ = n-1 (Ui)- Let 

Ui,r be the deformation of Ui induced by Cr, and assume we are given a 

deformation ni,r : ¼,r --t Ui,r of ni := nlv,. Then to lift ( Cr, ni,r) to a 
deformation of n we must choose gluing isomorphisms "PiJ : ¼J,r --; V}i,r 
satisfying the cocycle condition and compatible with the other data, namely 

the maps ni,r and the gluing isomorphisms <PiJ : UiJ,r --; UJi,r induced by 

Cr. But Uij is smooth, so that nlVi; is an isomorphism for each i-/=- j; hence 

the 1PiJ are univocally determined by the <PiJ and automatically satisfy the 

cocycle condition. ◊ 

Let us now denote by B(·) the germ of complex space being a hull for the 

functor D(·). Note that Lemma F.l implies that there is a cartesian diagram 

---+ B( C) 

l 
---+ Bloc(C). 

Proposition F.2. Let C be a reduced projective curve with planar singu

larities, n : C --; C be the normalisation, g = g( C). Let 1r : C --; B( C) be 

a semi-universal deformation of C. Denote by M = M 9 ,o(C, [Cl); then M is 

smooth at n, and the natural map M--; B 8 := B 8 (C) is the normalisation 

map. 

Proof. Write M for the germ of M at n. Since the domain of n is a smooth 

curve, the same is true for all stable maps in a neighborhood of n. Hence M 

is isomorphic to B(n). By Lemma F.1, together with Lemma D.1, we deduce 
that B(n) is smooth. By the definition of B 8 the natural map M --; B(C) 
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factors via B 15 , hence, since M is srnooth, via its norrnalisation B15 • On the 

other hand, we know that the farnily C --+ B15 obtained by pull-back adrnits a 

very weak sirnultaneous resolution of singularities [T], inducing a rnorphisrn 

B15 --+ M. lt is easy to check pointwise that these two rnorphisrns are inverse 

to each other (both B15 and M just pararnetrize the norrnalisation rnaps of 

the fibres of n). Since both B15 and Mare srnooth, a bijective rnorphisrn rnust 

be an isornorphisrn. ◊ 

Proof of Theorem 2. The scherne M 9 ,0 (C, [Cl) is the fibre over the point 

[C] of the rnorphisrn B15 --+ B 15 ; this is the rnultiplicity of B 15 at [C] since B15 

is srnooth. This proves the first equality. 

Let now X be a srnooth projective surface, C C X a reduced irreducible 

curve, n: C--+ C the norrnalisation, g = g(C). Assurne that n is an isolated 

point of M 9 ,0 (X, [Cl), and let Mn be the connected cornponent of n. Mn 

contains M9 ,0 (C, [Cl) as a closed subscherne; so we always have an inequality 

l(Mn) 2 l(M9 ,o(C, [Cl))= m(C). 

This inequality is an equality if and only if the natural rnorphisrn Mn --+ 

Hilb(X) sending each rnap to its irnage factors scherne-theoretically (and not 
only set-theoretically) via C. 

Hence to cornplete the proof of Theorem 2, it is enough to show that this is 

the case if C is rational and X is a K3 surface. Let S be the cornplete linear 

systern defined by C on X, and let C --+ S be the universal curve. lt is known 

that ]Cis srnooth, see [Mu]; but this rneans precisely that S rnaps transverse 
to the b-constant stratum in B(C), and we are clone in view of Corollary B.3. 
◊ 

G. Examples 

Example 1 (Beauville). Let ( C, o) be the singularity of equation xq = yP, 

with p < q and (p, q) = l. Then 

m(C,o) = - 1-(p+q)· 
p+q p 

Proof We write for sirnplicity M(X, ß) instead of M o,o(X, ß); if X is a 

curve and ß = [X] we ornit it. Let C be the plane curve of equation yP zq-p = 
xq. C is a rational curve with two singular points, o = (0, O, 1) and oo = 
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(1, 0, 0). Let a: C'-+ C be the partial normalisation of C at oo. By Theorem 
2, it is enough to prove that 

- 1 1 (p+q) l(M(C )) = - =: N(p,q). 
p+q p 

The natural map M(C')-+ M(C) given by µ f--+ a o µ is a closed embedding, 

and the closed subscheme M ( C') is identified by requiring the deformation of 

the normalisation morphism tobe locally trivial near oo. On the other hand, 

M ( C) is naturally a closed subset of M (P2 , qC), where C is the dass of a line. 

Let n : P 1 -+ C be the normalisation map, and choose coordinates on 
P 1 such that n(s,t) = (tPsq-p,tq,sq). A morphism in M(P2 ,qC) near n has 

equations 

for suitable homogeneous polynomials x, y, z of degree q. 

We impose the conditions that the image of the map be contained in C 
and that the deformation be locally trivial at oo. Then we eliminate the 

indeterminacy generated by a reparametrization of P 1 and a rescaling of the 

coordinates on P 2 . We get that all deformations of n in M ( C) must be (in 

affine coordinates where z = 1) of the form 

p . q . 

t f--+ (tP + L Xit\ tq + L Yit'). 
i=O i=O 

Hence we are now left with the following problem: compute the length of 

the C-algebra with generators x 0 , ... , Xp- 2 , y0 , ... , Yq- 2 and relations given 

by the coeflicients of the polynomial r - gP' where f = tP + L Xiti and 

g = tq + LYiti. 

lt is easy to check that the equation fq = gP is equivalent to qf' g = pg' f 

by taking d/dt o log on both sides. The t-degree of qf' g - pg' f is p + q - 1; 

however, we only get p + q - 2 equations since the coeflicients of tP+q-l and 

tP+q- 2 are zero anyway. Moreover, if we consider the variables Xi (resp. Yi) 

as having degree p - i ( resp. q - i), the equations we obtain are homogeneous 

of degree 2, ... ,P + q - 1. 

Now we recall the weighted Bezout theorem, which says that if we have 

a zero-dimensional algebra given by N homogeneous equations of degrees 

e1 in N weighted variables of degrees d1, then the length of the algebra is 

fle1/fld1. 
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Applying the formula in our case, with N = p+q-2, ( dj) = (2, 3, ... , p, 2, 3, 

... ,q) and ej = (2,3, ... ,p+q-1) gives 

N( ) = IJej = (p+q-1)! = _l_(p+q)· 
p, q IT dj p!q! p + q p 

Example 2. We would like to outline an algorithm for the computation of 

m(C,p) for a planar, reduced and irreducible curve singularity (C,p). Assume 

we know how to realize ( C, p) as a singularity of a rational curve. lt is then 

easy to realize it as a singularity of a plane rational curve C, whose other 

singularities are only nodes. Let d be the degree of the curve, F(x, y, z) = 0 

its equation, and fi = (x, y, z) an explicit normalisation given by homogeneous 

polynomials of degree d in s, t. Assume without loss of generality that z 
contains the monomial sd with nonzero coeffi.cient. 

Then we can describe the scheme Mo,o(C, [Cl) explicitly as follows. Choose 

three points Pi (i = 1, 2, 3) in P 1 mapping via n to smooth points of C; let 

Li c P 2 be a line transversal to C at n(pi)-

Choose variables Xi, Yi and Zi for i = 0, ... d, and let x be the polynomial 

x + Li xisitd-i; define y and z in a similar way. 

Then Mo,o(C, [Cl) is naturally isomorphic to the subscheme of 

Spec C[xi, Yi, zi] defined by the equations 

Zd = 0, 

(x, y, z)(Pi) E Li, i = 1, 2, 3, 

F(x, y, z) = 0. 

In fact, all deformations of fi are again morphisms of degree d from P 1 to 

P 2 , hence are given by polynomials of degree d. The first four equations, 

defining a linear subspace, correspond to choosing local coordinates near n 
on Mo,o(P2 , d); the last one, which is a system of d2 equations, imposes the 

condition that the scheme-theoretic image of the morphism be contained in 
C. 
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